Abstract

AbstractNovel tetrabutylammonium tetrakis(substituted benzoyloxy)borate salts (1a–1d) were synthesized by the reaction of tetrabutylammonium tetraphenylborate and corresponding substituted benzoic acids. Polyaddition reactions of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐bisphenol F (44BPF) or bisphenol F (BPF‐D) with the ammonium borates were investigated as model reactions of epoxy/phenol–novolac resin systems with respect to the thermal latency and storage stability of the catalyst. The polyaddition of DGEBA/44BPF with the ammonium borates in diglyme at 150 °C for 6 h proceeded up to 84–94% conversions and gave polymers with number‐average molecular weights of 3750–5750, whereas the polyaddition at 80 °C for 6 h gave less than 9% conversions. The catalytic activity of ammonium borates 1a–1d depended on the substituent of the phenyl group of the borates, and the order of activity was 1b (p‐OMe) > 1a (H) > 1c (p‐NO2) > 1d [3,5‐(NO2)2]. The ammonium borate catalyst with the substituent that yielded lower acidity of the corresponding substituted benzoic acid tended to reveal higher activity. In comparison with tetrabutylammonium bromide (TBAB) as a conventional ammonium salt, 1a–1d revealed better thermal latency. The storage stability of DGEBA/BPF‐D with the ammonium borate catalysts in bulk at 40 °C was better than that with TBAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2689–2701, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call