Abstract

Novel water-based core/shell CdTeSe/ZnS quantum dots (QDs) were synthesized by aqueous method. The CdTeSe/ZnS QDs were investigated by high resolution transmission electron microscopy, energy dispersive spectrometry, UV–vis absorption spectra, and photoluminescence spectrum. The as-prepared QDs capped with ZnS shell were spherical in shape with an excellent quantum yield of 16% and emitted bright yellow light. In addition, the CdTeSe/ZnS QDs can be excited by blue or near-UV region, which is an advantage over wavelength converters for white light-emitting diodes (LEDs). White LEDs based on CdTeSe/ZnS QDs, commercially known as Y3Al5O12:Ce3+ (YAG:Ce), and hybrid phosphor of CdTeSe/ZnS QDs and YAG:Ce, were fabricated. The luminescent properties of the resultant white LEDs were evaluated. The higher red-component in the emission spectrum from CdTeSe/ZnS QDs increased the color rendering index (CRI) value of the commercial YAG:Ce-based white LEDs, and the hybrid phosphor-based white LED had CIE-1993 color coordinate, color temperature, and CRI values of (0.3125, 0.2806), 7108 K and 83.3, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call