Abstract

Predicting the logarithm of hexadecane/air partition coefficient (L) for organic compounds is crucial for understanding the environmental behavior and fate of organic compounds and developing prediction models with polyparameter linear free energy relationships. Herein, two quantitative structure activity relationship (QSAR) models were developed with 1272 L values for the organic compounds by using multiple linear regression (MLR) and support vector machine (SVM) algorithms. On the basis of the OECD principles, the goodness of fit, robustness and predictive ability for the developed models were evaluated. The SVM model was first developed, and the predictive capability for the SVM model is slightly better than that for the MLR model. The applicability domain (AD) of these two models has been extended to include more kinds of emerging pollutants, i.e., oraganosilicon compounds. The developed QSAR models can be used for predicting L values of various organic compounds. The van der Waals interactions between the organic compound and the hexadecane have a significant effect on the L value of the compound. These in silico models developed in current study can provide an alternative to experimental method for high-throughput obtaining L values of organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.