Abstract

The response of environmental pollutants can be detected bioanalytically focusing on the source and matrices of concern. Cell culture bioassays are rapid and inexpensive and thus have great potential for routine monitoring of aquatic resources. Such novel in vitro assays are a new tool to investigate lipophilic and low volatile compounds and are a powerful complement to instrumental analysis. The ethoxyresorufin O-deethylase (EROD) microbioassay was conducted to determine cytochrome P4501A (CYP1A) activity in environmental samples, and the calculated 3-methylchloranthrene (3-MC) equivalent concentration (MEQ) was introduced as a new quantitative water quality parameter. The chemical MEQ was calculated by multiplying induction equivalency factor (IEF) to GC-MS analysis data. And biological (bio-) MEQ was calculated by comparing the concentration response curve of the sample with those of the 3-MC calibration curve. Therefore, chemical MEQ is an estimation of the toxic effects of polycyclic aromatic hydrocarbons (PAHs) and bio-MEQ is the total toxic effects of various CYP1A-inducing chemicals in water samples. In this study, bio-MEQ values of water samples were higher than chemical MEQ values and total PAH concentrations, indicating that there must be other compounds in the water sample effective as inducers of EROD and that the biological activities of mixture compounds are mainly due to additive effects. There was a good correlation between bio-MEQ and total PAH concentration. The difference between bio-MEQ and total PAH concentration was high in downstream areas, i.e., polluted sites. Bio-MEQ calculated based on the enzyme-inducing effect of water samples could give information about the biological potency of water samples caused by PAH-like compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.