Abstract

Two new series of diethyl 2-[2-(substituted-2-oxo-1,2-dihydroquinolin-4-yl)hydrazono]-succinates 6a-g and 1-(2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazoles 7a-f have been designed and synthesized. The structures of the synthesized compounds were proved by IR, mass, NMR (2D) spectra and elemental analyses. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI protocol. Consequently, seven compounds were further examined against the most sensitive cell lines, leukemia CCRF-CEM, and MOLT-4. 5-Amino-1-(6-bromo-2-oxo-1,2-dihydroquinolin-4-yl)-1H-pyrazole-3,4-dicarbonitrile (7f) was the most active product, with IC50 = 1.35 uM and 2.42 uM against MOLT-4 and CCRF-CEM, respectively. Also, it showed a remarkable inhibitory activity compared to erlotinib on the EGFR TK with IC50 = 247.14 nM and 208.42 nM, respectively. Cell cycle analysis of MOLT-4 cells treated with 7f showed cell cycle arrest at G2/M phase (supported by Caspases, BAX and Bcl-2 studies) with a significant pro-apoptotic activity as indicated by annexin V-FITC staining. Moreover, the docking study indicated that both the pyrazole moiety and the quinolin-2-one ring showed good fitting into EGFR (PDB code: 1M17). In order to interpret SAR of the designed compounds, and provide a basis for further optimization, molecular docking of the synthesized compounds to known EGFR inhibitors was performed. The study illustrated the effect of several factors on the compounds’ activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.