Abstract

TB continues to be a leading health threat despite the availability of powerful anti-TB drugs. We report herein the design and synthesis of various hybrid molecules comprising pyrazine scaffold and various formerly identified anti-mycobacterial moieties. Thirty-one compounds were screened in vitro for their activity against Mycobacterium tuberculosis H37Rv strain using MABA assay. The results revealed that six compounds (8a, 8b, 8c, 8d, 14b and 18) displayed significant activity against Mtb with MIC values ≤6.25µg/ml versus 6.25µg/ml for pyrazinamide. The most active compounds were then assessed for their in vitro cytotoxicity against PBMC normal cell line using MTT assay and showed SI>200. Several in silico studies have been carried out for target fishing of the novel compounds such as shape-based similarity, pharmacophore mapping and inverse docking. Based on this multi-step target fishing study, we suggest that pantothenate synthetase could be the possible target responsible for the action of these compounds. The most active compounds were then successfully docked into the active site of pantothenate synthetase enzyme with favorable binding interactions. In addition, in silico prediction of physicochemical, ADMET and drug-like properties were also determined indicating that compounds 8b, 8c and 8d are promising candidates for the development of new anti-TB agents with enhanced activity and better safety profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.