Abstract

In the aquatic environment, substances of pharmacological origin are common contaminants. The difficulty of removing them from water is a problem for the implementation of a circular economy policy. When recycling water, an effort should be made to remove, or at least, minimize the presence of these substances in the water. Porous membranes with a new functionality consisting in their adsorption capacity towards pharmaceutical substances have been developed. A Polyvinylidene Fluoride (PVDF) membrane with Calcium Carbonate (CaCO3) nanoparticles as an adsorbent was prepared. By implementing an integrated filtration-adsorption process using sulphadiazine, as a representative of pharmacological substances, 57 mg/m2 of adsorption capacity has been obtained, which is an improvement in adsorption properties of more than 50 times that of a commercial membrane. At the same time the membrane permeability is 0.29 m3/(h·m2·bar), which means that the membrane's permeability was improved by 75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.