Abstract

This article proposes a novel pulse-width modulation strategy to minimize switching losses of the Z-source inverter. The Z-source inverter has different pulse-width modulation patterns unlike the conventional voltage source inverter. Shoot-through states have been inserted within the zero states of the traditional pulse-width modulation patterns of a voltage source inverter to boost DC input voltage. Thus, the Z-source inverter has six active states, two zero states, and additional shoot-through states differentiating the Z-source and conventional voltage source inverters. The currents flowing through the switches of the Z-source inverter are larger than those of the conventional voltage source inverter, because Z-network currents must flow through the switches during the shoot-through states. Therefore, shoot-through currents increase the total switching losses of the Z-source inverter. In this article, switching losses of the Z-source inverter with the existing pulse-width modulation strategy are analyzed in detail. Then, new modulation signals of the Z-source inverter are introduced to produce unique pulse-width modulation patterns that minimize the switching losses of the Z-source inverter. The switching losses of the Z-source inverter with both pulse-width modulation strategies are simulated and compared. In addition, an experimental system has been built and tested to verify the effectiveness of the proposed strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.