Abstract

A novel proximity effect, which includes the effect due to secondary electron scattering to a range of less than a micron and the pattern dependence of resist development, has been found and investigated to develop a precise dose control method in electron beam nanolithography. Experiments and simulations including secondary electron scattering were performed for precise evaluation of the proximity effect. This result revealed that the proximity effect caused by secondary electron scattering to the range between 30 nm and a micron is not negligible for nano-patterns. In addition, from experimental estimation of the rate of development of patterns of various sizes, a significant decrease of the rate was found for patterns less than 30-nm wide. The difference of the rate is also modified by the background deposited energy due to surrounding patterns. Therefore, we have to be very careful about how we determine the proper dose for a given nano-pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.