Abstract

Novel properties of recently developed conducting and insulating polymers and their composites are discussed. Properties of conducting polymer whose main chains are composed of unsaturated /spl pi/-bonds depend strongly on the main chain structure, substituent and also molecular dopants. Various applications of conducting polymers such as electroluminescence (EL) elements, electrolyte capacitors, photoconductors, photovoltaic cells, superconductors and insulators at cryogenic temperature, are discussed by taking effects of molecular dopants such as C/sub 60/ into consideration. A new type of insulating polymer, syndiotactic polypropylene prepared by newly developed metallocene catalysts has been studied and found to exhibit much superior electrical, thermal and mechanical characteristics compared with those of conventional isotactic polypropylene, atactic polypropylene and polyethylene. These excellent characteristics originate from lower crystallinity, smaller spherulites and different crystal lattice than in isotactic polypropylene. Negligible degradation of syndiotactic polypropylene by contact with copper is interpreted in terms of difference of catalysts and suppression of diffusion of copper cation. New types of conducting polymer, insulating polymer composites were prepared. Their conductivity was controlled over more than 10 orders of magnitude by small amounts of a conducting polymer, polypyrrole, which can be interpreted in terms of the percolation model depending on the shape and density of polypyrrole coated insulating polymer particles. Nonlinear current-voltage characteristics were also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.