Abstract

An innovative process to uniformly incorporate dispersed nanoscale ceramic inclusions within a polymer matrix was demonstrated. Micron‐sized high density polyethylene particles were coated with ultrathin alumina films by atomic layer deposition in a fluidized bed reactor at 77°C. The deposition of alumina on the polymer particle surface was confirmed by Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Conformal coatings of alumina were confirmed by transmission electron microscopy and focused ion beam cross‐sectional scanning electron microscopy. The results of inductively coupled plasma atomic emission spectroscopy suggested that there was a nucleation period. The results of scanning electron microscopy, particle size distribution, and surface area of the uncoated and nanocoated particles showed that there was no aggregation of particles during the coating process. The coated polymer particles were extruded by a heated extruder at controlled temperatures. The successful dispersion of the crushed alumina shells in the polymer matrix following extrusion was confirmed using cross‐sectional transmission electron microscopy. The dispersion of alumina flakes can be controlled by varying the polymer particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.