Abstract

A single high-entropy phase material with hexagonal structure is produced by a two-steps processing method. Elemental reactants are first remarkably converted by Self-propagating High-temperature Synthesis (SHS). The completion of the chemical transformation to the desired (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 phase and its concurrent consolidation up to 92.5% relative density is achieved by processing the SHS powders at 1950 °C via Spark Plasma Sintering. It is clearly evidenced that the use of the SHS technique is extremely beneficial to promote the formation of high-entropy ceramics, as compared to the time consuming ball milling treatment alternatively adopted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call