Abstract

The goal of this project is to investigate the use of a regenerable sorbent for removing and recovering mercury from the flue gas of coal-fired power plants. The process is based on the sorption of mercury by noble metals and the thermal regeneration of the sorbent, recovering the desorbed mercury in a small volume for recycling or disposal. The project was carried out in two phases, covering five years. Phase I ran from September 1995 through September 1997 and involved development and testing of sorbent materials and field tests at a pilot coal-combustor. Phase II began in January 1998 and ended September 2000. Phase II culminated with pilot-scale testing at a coal-fired power plant. The use of regenerable sorbents holds the promise of capturing mercury in a small volume, suitable for either stable disposal or recycling. Unlike single-use injected sorbents such as activated carbon, there is no impact on the quality of the fly ash. During Phase II, tests were run with a 20-acfm pilot unit on coal-combustion flue gas at a 100 lb/hr pilot combustor and a utility boiler for four months and six months respectively. These studies, and subsequent laboratory comparisons, indicated that the sorbent capacity and life were detrimentally affected by the flue gas constituents. Sorbent capacity dropped by a factor of 20 to 35 during operations in flue gas versus air. Thus, a sorbent designed to last 24 hours between recycling lasted less than one hour. The effect resulted from an interaction between SO{sub 2} and either NO{sub 2} or HCl. When SO{sub 2} was combined with either of these two gases, total breakthrough was seen within one hour in flue gas. This behavior is similar to that reported by others with carbon adsorbents (Miller et al., 1998).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.