Abstract

Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578K for 3h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5h at 833K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call