Abstract

A novel approach for preparing drug-containing particles (DCPs) with controlled size distribution and high drug loading was developed using melt granulation. This approach comprises two steps. First, melting component adsorbed particles (MAs) were prepared by mixing and heating the melting components with a porous carrier using a high shear granulator. Second, DCPs were prepared by layering the drug on MAs using a fluidized bed rotor granulator. The time taken for both steps was within 30 min. Adding the polymer in the second step remarkably increased the viscosity of the mixture of melting components and the polymer. Therefore, DCPs could be successfully loaded with a high amount of drug (70% w/w). The particle size distribution of the DCPs was narrow, and it depended on that of the MAs. The flowability of the DCPs was excellent, and the sphericity was close to 1. A unique particle formulation mechanism was suggested based on the observation of DCPs using scanning electron microscopy. The manufacturing time and DCP characteristics were not affected by the manufacturing scale. In conclusion, we have successfully developed a highly efficient novel approach for preparing optimal DCPs through melt granulation, named “Melt Adsorption and Layering with Porosity Core” (MALCORE®).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.