Abstract
Stroke-associated pneumonia (SAP) is a common cause of disability or death. Although the researches on SAP have been relatively mature, the method that can predict SAP with great accuracy has not yet been determined. It is necessary to discover new predictors to construct a more accurate predictive model for SAP. We continuously collected 2,366 patients with acute ischemic stroke, and then divided them into the SAP group and non-SAP group. Data were recorded at admission. Through univariate analyses and multivariate regression analyses of the data, the new predictive factors and the predictive model of SAP were determined. The receiver operating characteristic (ROC) curve and the corresponding area under the curve (AUC) were used to measure their predictive accuracy. Of the 2,366 patients, 459 were diagnosed with SAP. International normalized ratio (INR) (odds ratio = 37.981; 95% confidence interval, 7.487–192.665; P < 0.001), age and dysphagia were independent risk factors of SAP. However, walking ability within 48 h of admission (WA) (odds ratio = 0.395; 95% confidence interval, 0.287–0.543; P < 0.001) was a protective factor of SAP. Different predictors and the predictive model all could predict SAP (P < 0.001). The predictive power of the model (AUC: 0.851) which included age, homocysteine, INR, history of chronic obstructive pulmonary disease (COPD), dysphagia, and WA was greater than that of age (AUC: 0.738) and INR (AUC: 0.685). Finally, we found that a higher INR and no WA could predict SAP in patients with acute ischemic stroke. In addition, we designed a simple and practical predictive model for SAP, which showed relatively good accuracy. These findings might help identify high-risk patients with SAP and provide a reference for the timely use of preventive antibiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.