Abstract

(1) Background: Accurate diagnosis of wound age is crucial for investigating violent cases in forensic practice. However, effective biomarkers and forecast methods are lacking. (2) Methods: Samples were collected from rats divided randomly into control and contusion groups at 0, 4, 8, 12, 16, 20, and 24 h post-injury. The characteristics of concern were nine mRNA expression levels. Internal validation data were used to train different machine learning algorithms, namely random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), gradient boosting (GB), and stochastic gradient descent (SGD), to predict wound age. These models were considered the base learners, which were then applied to developing 26 stacking ensemble models combining two, three, four, or five base learners. The best-performing stacking model and base learner were evaluated through external validation data. (3) Results: The best results were obtained using a stacking model of RF + SVM + MLP (accuracy = 92.85%, area under the receiver operating characteristic curve (AUROC) = 0.93, root-mean-square-error (RMSE) = 1.06 h). The wound age prediction performance of the stacking models was also confirmed for another independent dataset. (4) Conclusions: We illustrate that machine learning techniques, especially ensemble algorithms, have a high potential to be used to predict wound age. According to the results, the strategy can be applied to other types of forensic forecasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.