Abstract

A brand new method for synthesizing Mn(PO3(OH))·3H2O is attained in this paper. During this process, pure flake-like Mn(PO3(OH))·3H2O precipitate is prepared using C2H5OH as initiator. Besides that, LiMn0.5Fe0.5PO4/C is successfully synthesized from the Mn(PO3(OH))·3H2O precursor at 650 °C for the first time. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are applied in the characterization of the Mn(PO3(OH))·3H2O precursor and LiMn0.5Fe0.5PO4/C. High-resolution transmission electron microscopy (HRTEM) is also used to investigate the morphology of LiMn0.5Fe0.5PO4/C. X-ray photoelectron spectroscopy (XPS) and galvanostatic charge and discharge test are employed to characterize the Mn(PO3(OH))·3H2O precursor and LiMn0.5Fe0.5PO4 material, respectively. The as-prepared LiMn0.5Fe0.5PO4/C material exhibited a reversible capacity of 131 mAh g−1 at 0.05 C. It can be confirmed that the incorporation of Fe into LiMnPO4 can significantly improve the electrochemical properties for improving the conductivity of the material and facilitating the Li+ diffusion. In addition, a capacity of 120 mAh g−1 is still delivered at 0.05 C rate with a capacity retention of about 91% after 25 cycles, and reversible capacity can reach 105 mAh g−1 at 1 C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.