Abstract

Novel polyvinyl alcohol (PVA)/styrene butadiene rubber (SBR) latex/carboxymethyl cellulose (CMC)/halloysite nanotubes (HNTs) nanocomposites were successfully prepared through physical blending. The as‐obtained PVA/SBR/CMC/HNTs nanocomposites were coated on the surface of old corrugated container (OCC)‐based paper in an effort to improve the mechanical properties of paper. To improve the dispersion of HNTs and enhance the compatibility between HNTs and polymer matrix, HNTs were modified with titanate coupling agent (TCA). FT‐IR, together with TGA, confirmed that TCA was grafted onto the surface of HNTs successfully. XRD demonstrated that the crystal structures of HNTs remained almost unchanged. TEM showed that modified HNTs exhibited good dispersion and possessed nanotubular structures with an outer diameter of around 50 nm and an inner diameter of about 20 nm. SEM gave an indication that modified HNTs were dispersed more uniformly than unmodified HNTs within PVA/SBR/CMC matrix. Rheological measurement exhibited that surface modification process enhanced the compatibility between HNTs and polymer matrix, thus resulting in the decreased viscosity of nanocomposites. In comparison with unmodified HNTs, modified HNTs were found to contribute more to the enhancement in mechanical properties, which might be attributed to the better dispersion and compatibility of modified HNTs evidenced by TEM, SEM, and rheological measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.