Abstract

We offer a novel polymer-inorganic solid-state reaction route for the in situ generation of nanochalcogenide semiconductor in the network of polymer which itself acts as a chalcogen source. We have exemplified feasibility of this route by reacting CdI 2 with engineering thermoplastic polyphenylene sulphide (PPS). These two reactants in 1:1 and 10:1 molar ratios were simply heated at the crystalline melting temperature of PPS. The resultant products were characterized by X-ray diffractometry, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM, with selected area electron diffraction). The prima facie observations revealed the formation of cubic nanocrystallites of CdS with the particle size ranging from 6 to 20 nm entrapped in modified (cyclized) PPS matrix when the reactants were taken in 10:1 molar ratio. A tentative mechanism has been suggested for such hitherto unattempted solid-state reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call