Abstract

A series of aliphatic biodegradable poly(butylene succinate-co- dl-lactide) (PBSLA) copolyesters were synthesized with the aim of improving the degradation rate of poly(butylene succinate) (PBS) by incorporation of dl-oligo(lactic acid) (OLA) into the PBS molecular chains. The composition and sequential structure of the aliphatic copolyesters were investigated by proton nuclear magnetic resonance ( 1H NMR) spectroscopy. The crystallization behaviors, the crystal structure and morphology of the copolyesters were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization of the copolyesters was restricted by the incorporation of lactide (LA) units, which further tuned the mechanical properties of the copolyesters. The copolyesters could form complete spherulites and exhibit the same crystal structure as that of PBS. Enzymatic study indicated that the copolyesters with higher content of LA units degraded faster, and the degradation began in the amorphous regions and then in the crystalline regions. The morphology and the resulting degradation products of the copolyesters were investigated by scanning electron microscopy (SEM) and 1H NMR analysis during the degradation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.