Abstract

The potential of employing nanofiltration for the removal of sulfate from concentrated chlor-alkali brine has been investigated. Polybenzimidazole (PBI) was chosen to fabricate nanofiltration hollow-fiber membranes through the dry-jet wet phase-inversion technique because of its robust mechanical strength and excellent chemical stability. The feed solution was a concentrated brine consisting of 253.3 g L-1 NaCl, 9.7 g L-1 Na2SO4, and 9.5 g L-1 Na2CrO4 with a pH value greater than 12.65. The PBI membranes showed high sulfate rejection (up to 98.4% at pH 13.25 and 25 bar) and low chloride rejection (less than 4.0%), thus simultaneously obtaining an extremely high di-/monovalent anion selectivity. In addition, the sulfate and chromate rejections increased with increasing solution pH and/or operating pressure. The impressive separation performance can be attributed to the unique pore and charge characteristics and superior chemical stability of PBI NF membranes. It was found that the mean effective pore size ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.