Abstract

This paper presents a nonlinear analysis procedure for evaluating the seismic performance of reinforced concrete (RC) bridge columns with lap splices using a novel plastic hinge element considering shear deformation. To accurately assess the inelastic behavior of RC bridge columns, reliable three-dimensional (3D) constitutive models are required. However, developing a 3D nonlinear material model is difficult and computationally intensive. In this study, to address these issues, a new plastic hinge element considering shear deformation for RC bridge columns is developed. The new plastic hinge element is based on the Timoshenko beam theory and utilizes two-noded zero length element with six degrees of freedom. The finite element model was implemented in a computer program named Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST) developed by the authors. The developed plastic hinge element for seismic performance assessment of RC bridge columns with lap splices was validated through comparison of the numerical and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call