Abstract

The timing definition of valve plates is one of the most complex topics in the piston pump designs because it affects many pump characteristics (such as efficiency, swashplate stroking, stabilities, noise, etc.). In the study, the pressure carryover is introduced and defined as the average angular positions to locate piston pressure transitions from the top dead center (TDC) or bottom dead center (BDC) in the piston pump. Pressure carryover presents the overall outcome of the pressure transitions within piston bores. The new pressure carryover definition is derived by the timing angles and other geometrics of valve plates that is an approximation of the practical pressure transitions. The pressure carryover also determines the containment forces and moments on the swashplate produced by the pumping pistons. The relationship between the pressure carryover angle and the containment moment has been developed and analyzed in the study. The amplitudes and frequencies of the forces and moments can be changed by varying the pressure carryover angle that produce different tonalities and control efforts for the swashplate type axial-piston pumps. Therefore, the pressure carryover is the most important and straightforward connection between pump dynamics and valve plate designs. In order to optimize the pump performance, the piston pressure carryover might be investigated thoroughly for the pump and its controller designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.