Abstract

Abstract This study presents a well-developed optimization methodology based on the dynamic inertia weight Artificial Bee Colony algorithm (ABC) to design an optimal PID controller for a robotic arm manipulator. The dynamical analysis of robotic arm manipulators investigates a coupling relation between the joint torques applied by the actuators and the position and acceleration of the robot arm. An optimal PID control law is obtained from the proposed (ABC) algorithm and applied to the robotic system. The designed controller optimizes the trajectory of the robot’s end effector for a time-variant input and makes the robot robust in the presence of external disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call