Abstract

We studied a novel photoanode structure inspired by butterfly wing scales with potential application on dye-sensitized solar cell in this paper. Quasi-honeycomb like structure (QHS), shallow concavities structure (SCS), and cross-ribbing structure (CRS) were synthesized onto a fluorine-doped tin-oxide-coated glass substrate using butterfly wings as biotemplates separately. Morphologies of the photoanodes, which were maintained from the original butterfly wings, were characterized by scanning and transmission electron microscopies. The results show that the calcined photoanodes with butterfly wings’ structures, which comprised arranged ridges and ribs consisting of nanoparticles, were fully crystallined. Analysis of absorption spectra measurements under visible light wavelength indicates that the light-harvesting efficiencies of the QHS photoanode were higher than the normal titania photoanode without biotemplates because of the special microstructures, and then the whole solar cell efficiency can be lifte...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.