Abstract

Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.

Highlights

  • Phosphorus (P) has long been considered the second most limiting nutrient for plant growth in terrestrial ecosystems after nitrogen (N) [1, 2]

  • While the enhancement in total soil P could be attributed to the addition of chicken manure, the elevated bioavailability of soil P reflected the increase in soil microbial P-cycling potential following the restoration measures [18, 19]

  • Despite the possibility that soil microbial P-cycling potential does not necessarily reflect the actual activity of the soil enzymes responsible for soil P cycling [25], we found evidence that the relative abundance of all genes involved in soil microbial P cycling was positively related to the concentration of the total soil P and to that of the bioavailable soil P (Fig. 2a, b)

Read more

Summary

Introduction

Phosphorus (P) has long been considered the second most limiting nutrient for plant growth in terrestrial ecosystems after nitrogen (N) [1, 2]. In contrast to this conventional view, there is mounting evidence that P limitation could be as impactful as N limitation in terrestrial ecosystems [3, 4]. These authors contributed : Jie-Liang Liang, Jun Liu, Pu Jia

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.