Abstract

Staphylococcus aureus causes a wide range of human disease ranging from localized skin and soft tissue infections to potentially lethal systemic infections. S. aureus has the biosynthetic ability to generate numerous virulence factors that assist in circumventing the innate immune system during disease pathogenesis. Recent studies have uncovered a set of extracellular peptides produced by community-associated methicillin-resistant S. aureus (CA-MRSA) with homology to the phenol-soluble modulins (PSMs) from Staphylococcus epidermidis. CA-MRSA PSMs contribute to skin infection and recruit and lyse neutrophils, and truncated versions of these peptides possess antimicrobial activity. In this study, novel CA-MRSA PSM derivatives were discovered by the use of microbial imaging mass spectrometry. The novel PSM derivatives are compared with their parent full-length peptides for changes in hemolytic, cytolytic, and neutrophil-stimulating activity. A potential contribution of the major S. aureus secreted protease aureolysin in processing PSMs is demonstrated. Finally, we show that PSM processing occurs in multiple CA-MRSA strains by structural confirmation of additional novel derivatives. This work demonstrates that IMS can serve as a useful tool to go beyond genome predictions and expand our understanding of the important family of small peptide virulence factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.