Abstract

BackgroundDisordered folliculogenesis is a core characteristic of polycystic ovary syndrome (PCOS) and androgen receptors (ARs) are closely associated with hyperandrogenism and abnormalities in folliculogenesis in PCOS. However, whether the new AR binding partner phosphoglycerate kinase 1 (PGK1) in granulosa cells (GCs) plays a key role in the pathogenesis of PCOS remains unclear.MethodsWe identified the new AR binding partner PGK1 by co-IP (co-immunoprecipitation) in luteinized GCs, and reconfirmed by co-IP, co-localization and GST pull down assay, and checked PGK1 expression levels with qRT-PCR and western blotting. Pharmaceuticals rescue assays in mice, and metabolism assay, AR protein stability and RNA-seq of PGK1 targets in cells proved the function in PCOS.FindingsPGK1 and AR are highly expressed in PCOS luteinized GCs and PCOS-like mouse ovarian tissues. PGK1 regulated glucose metabolism and deteriorated PCOS-like mouse metabolic disorder, and paclitaxel rescued the phenotype of PCOS-like mice and reduced ovarian PGK1 and AR protein levels. PGK1 inhibited AR ubiquitination levels and increased AR stability in an E3 ligase SKP2-dependent manner. Additionally, PGK1 promoted AR nuclear translocation, and RNA-seq data showed that critical ovulation-related genes were regulated by the PGK1-AR axis.InterpretationPGK1 regulated GCs metabolism and interacted with AR to regulate the expression of key ovulation genes, and also mediated cell proliferation and apoptosis, which resulted in the etiology of PCOS. This work highlights the pathogenic mechanism and represents a novel therapeutic target for PCOS.FundingNational Key Research and Development Program of China; National Natural Science Foundation of China grant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.