Abstract

Twenty six peroxides belonging to bridged 1,2,4,5-tetraoxanes, bridged 1,2,4-trioxolanes (ozonides), and tricyclic monoperoxides were evaluated for their in vitro antimalarial activity against Plasmodium falciparum (3D7) and for their cytotoxic activities against immortalized human normal fibroblast (CCD19Lu), liver (LO2 ), and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer-cell lines. Synthetic ozonides were shown to have the highest cytotoxicity on HepG2 (IC50 =0.19-0.59 μm), and some of these compounds selectively targeted liver cancer (selectivity index values for compounds 13 a and 14 a are 20 and 28, respectively) at levels that, in some cases, were higher than those of paclitaxel, artemisinin, and artesunic acid. In contrast some ozonides showed only moderate antimalarial activity against the chloroquine-sensitive 3D7 strain of P. falciparum (IC50 from 2.76 to 24.2 μm; 12 b, IC50 =2.76 μm; 13 a, IC50 =20.14 μm; 14 a, IC50 =6.32 μm). These results suggest that these derivatives have divergent mechanisms of action against cancer cells and malaria-infected cells. A cyclic voltammetry study of the peroxides was performed, but most of the compounds did not show direct correlation in oxidative capacity-activity. Our findings offer a new source of antimalarial and anticancer agents through structural modification of peroxide compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.