Abstract

Novel permanent magnet (PM) motor drives have been successfully developed to fulfil the special requirements for electric vehicles such as high power density, high efficiency, high starting torque, and high cruising speed. These PM motors are all brushless and consist of various types, namely rectangular-fed, sinusoidal-fed, surface-magnet, buried-magnet, and hybrid. The advent of novel motor configurations lies on the unique electromagnetic topology, including the concept of multipole magnetic circuit and full slot-pitch coil span arrangements, leading to a reduction in both magnetic yoke and copper, decoupling of each phase flux path, and hence an increase in both power density and efficiency. Moreover, with the use of fractional number of slots per pole per phase, the cogging torque can be eliminated. On the other hand, by employing the claw-type rotor structure and fixing an additional field winding as the inner stator, these PM hybrid motors can further provide excellent controllability and improve efficiency map. In the PM motors, by purposely making use of the transformer EMF to prevent the current regulator from saturation, a novel control approach is developed to allow for attaining high-speed constant-power operation which is particularly essential for electric vehicles during cruising. Their design philosophy, control strategy, theoretical analysis, computer simulation, experimental tests and application to electric vehicles are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.