Abstract

Atherosclerosis is a chronic inflammatory disease characterized by plaque build-up in the arteries, leading to the obstruction of blood flow. Macrophages are the primary immune cells found in the atherosclerotic lesions and are directly involved in atherosclerosis progression. Macrophages are derived from extravasating blood monocytes. The monocytic CD40 receptor is important for monocyte recruitment on the endothelium expressing the CD40 ligand (CD40L). Thus, targeting monocyte/macrophage interaction with the endothelium by inhibiting CD40-CD40L interaction may be a promising strategy for attenuating atherosclerosis. Monoclonal antibodies have been used against this target but shows various complications. We used an array of computer-aided drug discovery tools and molecular docking approaches to design a therapeutic inhibitory peptide that could efficiently bind to the critical residues (82Y, 84D, and 86N) on the CD40 receptor essential for the receptor's binding to CD40L. The initial screen identified a parent peptide with a high binding affinity to CD40, but the peptide exhibited a positive hepatotoxicity score. We then designed several novel peptidomimetic derivatives with higher binding affinities to CD40, good physicochemical properties, and negative hepatotoxicity as compared to the parent peptide. Furthermore, we conducted molecular dynamics simulations for both the apo and complexed forms of the receptor with ligand, and screened peptides to evaluate their stability. The designed peptidomimetic derivatives are promising therapeutics targeting the CD40-CD40L interaction and may potentially be used to attenuate atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call