Abstract

The insertion of functional groups in polymer compounds may facilitate their interaction with different drugs. PEG polymers are widely used for their low melting point, low toxicity, drug compatibility, and hydrophilicity. They are used as pharmaceutical excipients for the formulation of conventional or modified released drugs and are designed to be upgraded as drug-modulating controllers at specific sites in the body. Indomethacin has been used in the controlled release of drugs because it is a drug that have good interaction with different polymers. The drug is a non-steroidal anti-inflammatory drug used in the treatment of rheumatoid arthritis, osteoarthritis, spondylitis, and other disorders. In this work, PEG 4000 had its chain modified by organic reactions and their derivatives were emulsified to form microparticles using polyvinyl alcohol as an emulsifier. Posteriorly were also incorporated with indomethacin. The samples were characterized to prove the influence of indomethacin on the morphology and thermal behavior of this polymer. The controlled release was performed in the time from 0 to 240 min using the Ultraviolet Spectroscopy to quantify indomethacin released from the polymer matrix for these 4 hours. Releases over the time were satisfactory as concentrations increased over time, which we can conclude that the structural modification of PEG 4000 was beneficial in the release of the indomethacin drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.