Abstract

A novel Pd-loaded self-standing hierarchical pore structure silicalite were obtained by a handy polymer form board assisted hydrothermal method. The selected foam-shaped form board of a polyurethane (PU) foam monolith was regarded as the precursor of the self-standing hierarchical pore structure silicalite. The fruiting silicalite can steadily hold unique macroporous network structure and shape of the anterior original PU foam board . By means of the BET and BJH pore size distribution tests, the as-synthesis silicalite demonstrated hierarchical pore structure. The method of in-situ reduction was wielded to load palladium on the silicalite, and the catalytic performance of the catalyst to decompose toluene was tested at multiple burning temperatures. The experimental results revealed that the Pd-loaded catalyst can effectively decompose toluene at nearly 230°C, realizing low-temperature catalytic combustion of toluene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.