Abstract

Although combination therapy allows the suppression of human immunodeficiency virus type 1 (HIV-1) viremia to undetectable levels, eradication has not been achieved because the virus persists in cellular reservoirs, particularly the latent reservoir in resting CD4(+) T lymphocytes. We previously established a simian immunodeficiency virus (SIV)/macaque model to study latency. We describe here a novel mechanism for the induction of SIV from latently infected resting CD4(+) T cells. Several human cell lines including CEMx174 and Epstein-Barr virus-transformed human B-lymphoblastoid cell lines mediated contact-dependent activation of resting macaque T cells and induction of latent SIV. Antibody-blocking assays showed that interactions between the costimulatory molecule CD2 and its ligand CD58 were involved, whereas soluble factors and interactions between T-cell receptors and major histocompatibility complex class II were not. Combinations of specific antibodies to CD2 also induced T-cell activation and virus induction in human resting CD4(+) T cells carrying latent HIV-1. This is the first demonstration that costimulatory signals can induce latent virus without the coengagement of the T-cell receptor, and this study might provide insights into potential pathways to target latent HIV-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.