Abstract

Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 μg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 μg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39–156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29–37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call