Abstract

A novel parallelization of discontinuous Galerkin time-domain (DGTD) method hybrid with the local time step (LTS) method on Sunway supercomputers for electromagnetic simulation is proposed. The proposed method includes a minimum number of roundtrip (MNR) strategy for processor-level parallelism and a double buffer strategy based on the remote memory access (RMA) of the Sunway processor. The MNR strategy optimizes the communication topology between nodes by recursively establishing the minimum spanning tree and the double buffer strategy is designed to make communication overlapped computation when RMA transmission. Combining the two methods, the proposed method achieves an unprecedented massively parallelism of the DGTD method. Several examples of radiation and scattering are used as cases to study the accuracy and validity of the proposed method. The numerical results show that the proposed method can effectively support 16,000 nodes (1,040,000 cores) parallelism on the Sunway supercomputer, which enables the DGTD method to solve the transient electromagnetic field in a very short time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call