Abstract

This study demonstrates the facile synthesis of palladium nanoparticles (PdNPs) decorated molybdenum carbide/polyaniline (MoC/PANI) nanohybrid material using a hydrothermal method followed by a high-temperature carbonization process. As-synthesized MoC/PANI/PdNPs nanohybrid material was characterized using high-resolution transmission electron microscopy, X-ray photoelectron spectrometry, X-ray diffractometer, and field-emission scanning electron microscopy techniques. The developed nanohybrid material was coated over a screen-printed carbon electrode (SPE) to fabricate MoC/PANI/PdNPs/SPE and applied for the efficient electrooxidation of methanol (MeOH) under alkaline medium using cyclic voltammetry and chronoamperometry techniques. The electrochemical behaviour of the developed electrode showed excellent electrocatalytic activity towards the oxidation of MeOH with high durability. The electrooxidation capability of the prepared electrode was compared with commercial 10% Pd/C and other recently reported electrocatalysts. The MoC/PANI/PdNPs/SPE showed superior electrocatalytic property due to specific surface morphology, intense surface area, and higher-mass activity over MoC/PdNPs/SPE, and Pd/C/SPE modified electrodes. Therefore, the fabricated MoC/PANI/PdNPs/SPE is proved to be an excellent electrocatalyst and alternative electrode material for direct MeOH fuel cell (DMFCs) applications in future energy technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call