Abstract

Inhibition of aluminium corrosion in 2 M sodium hydroxide solution by a package composed of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and lupine seed extract has been investigated employing different electrochemical techniques and chemical gasometry measurements. Potentiodynamic polarization curve measurements showed that lupine seed extract controls both the anodic dissolution of aluminium and the hydrogen gas evolved at the cathodic sites of aluminium surface. Nyquist plots showed two capacitive semicircles in the high and low frequency regions separated by an inductive loop at intermediate frequencies. The inductive loop may be explained by the occurrence of adsorbed intermediates on the surface. A proposed equivalent circuit was used to analyse the impedance spectra for aluminium in NaOH solutions. The corrosion inhibition data have been analysed using different isotherms. The results showed excellent agreement between the kinetic–thermodynamic model and Flory–Huggins isotherm. Gasometry measurements showed that the Inhibitive effect of the surfactant increases at a composition around its critical micelle concentration (cmc). The presence of both the surfactant and lupine seed extract did not indicate synergistic action between them. The mode of adsorption of the surfactant molecules corresponding to their structure is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call