Abstract

Good quality ZnO nanostructures were obtained by the microwave-assisted hydrothermal synthesis, at low reaction temperatures, using zinc acetate as the starting precursor. X-ray diffraction confirmed the crystallinity of the ZnO nanostructures, which resulted free of impurities. Field emission gun scanning electron microscopy analysis revealed that the ZnO nanostructures crystallized at 120°C were more homogeneous and had a constant diameter along the entire wire length, exhibiting an ideal defect density that favors the gas sensing response. A new ozone gas sensor based on these nanostructures was evaluated at low exposure times (15s) by recording the change in the film resistance. The ZnO nanostructures showed good sensitivity even at low ozone concentration (100ppb), and fast response and short recovery time at 200°C, demonstrating great potential for a variety of applications. Two main effects were observed: the first one is intrinsic to that of the sample, while the second is a consequence of the surface and interface complex cluster defects, which produce extrinsic defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.