Abstract

Although oxytocin commonly is used to augment or induce labor, it is difficult to predict its effectiveness because oxytocin dose requirements vary significantly among women. One possibility is that women requiring high or low doses of oxytocin have variations in the oxytocin receptor gene. To identify oxytocin receptor gene variants in laboring women with low and high oxytocin dosage requirements. Term, nulliparous women requiring oxytocin doses of ≤4 mU/min (low-dose-requiring, n= 83) or ≥20 mU/min (high-dose-requiring, n= 104) for labor augmentation or induction provided consent to a postpartum blood draw as a source of genomic DNA. Targeted-amplicon sequencing (coverage >30×) with MiSeq (Illumina) was performed to discover variants in the coding exons of the oxytocin receptor gene. Baseline relevant clinical history, outcomes, demographics, and oxytocin receptor gene sequence variants and their allele frequencies were compared between low-dose-requiring and high-dose-requiring women. The Scale-Invariant Feature Transform algorithm was used to predict the effect of variants on oxytocin receptor function. The Fisher exact or χ2 tests were used for categorical variables, and Student ttestsorWilcoxon rank sum tests were used for continuous variables. APvalue <.05 was considered statistically significant. The high-dose-requiring women had greater rates of obesity and diabetes and were more likely to have undergone labor induction and required prostaglandins. High-dose-requiring women were more likely to undergo cesarean delivery for first-stage arrest and less likely to undergo cesarean delivery for nonreassuring fetal status. Targeted sequencing of the oxytocin receptor gene in the total cohort (n= 187) revealed 30 distinct coding variants: 17 nonsynonymous, 11 synonymous, and 2 small structural variants. One novel variant (A243T)was found in both the low- and high-dose-requiring groups. Three novel variants (Y106H, A240_A249del, and P197delfs*206) resulting in an amino acid substitution, loss of 9 amino acids, and a frameshift stop mutation, respectively, were identified only in low-dose-requiring women. Nine nonsynonymous variants were unique to the high-dose-requiring group. These included 3 known variants (R151C, G221S, and W228C) and 6 novel variants (M133V, R150L, H173R, A248V, G253R, and I266V). Of these, R150L, R151C, and H173R were predicted by Scale-Invariant Feature Transform algorithm to damage oxytocin receptor function. There was no statistically significant association between thenumbers of synonymous and nonsynonymous substitutions in the patient groups. Obesity, diabetes, and labor induction were associated with the requirement for high doses of oxytocin. We did not identify significant differences in the prevalence of oxytocin receptor variants between low-dose-requiring and high-dose-requiring women, but novel oxytocin receptor variants were enriched in the high-dose-requiring women. We also found 3 oxytocin receptor variants (2 novel, 1 known) that were predicted to damage oxytocin receptor function and would likely increase an individual's risk for requiring a high oxytocin dose. Further investigation of oxytocin receptor variants and their effects on protein function will inform precision medicine in pregnant women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.