Abstract

The fragility of the skeleton and poor bioaccessibility limit Silica aerogel's application in the food industry. In this study, composite gels were obtained by cross-linking pea proteins isolate (PPI) with Tetraethoxysilane (TEOS)to improve the bioavailability of silica-derived aerogels. It indicated that TEOS first condensed with H+ to form secondary particles and then complexed with PPI via hydroxyl groups to form a composite aerogel. Meanwhile, the PPI-Si composite aerogel formed a dense mesoporous structure with a specific surface area of 312.5 g/cm3. This resulted in a higher oil holding percentage of 89.67 % for the PPI (10 %)-Si aerogel, which was 34.1 % higher than other studies, leading to a more stable oleogel. Finally, as a delivery system, the composite oleogel not only could significantly increase the bioaccessibility rate by 27.4 % compared with silica aerogel, but also could efficiently inhibit the premature release of curcumin in the simulated gastric fluids, while allowed sustainably release in the simulated intestinal fluids. These results provided a theoretical basis for the application of silica-derived aerogels in food and non-food applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.