Abstract

Feature selection techniques have been presented to allow us to choose a small subset of the original components’ relevant features by removing irrelevant or redundant features. Feature selection is essential for many reasons such as simplification, performance, computational efficiency, and quality interpretability. Owing to the importance mentioned above, many researchers have proposed and developed many algorithms to solve the feature selection problem. Although these approaches produce useful results, they possess some shortcomings like inadequate feature reduction. In this paper, a novel feature selection algorithm based on the crow search algorithm is presented. The algorithm uses dynamic awareness probability to keep the balance between the local and global search processes. Moreover, a novel neighborhood assigning strategy has been introduced to optimize the local search. Considering the best-selected features in each iteration helps attain more benefits in global search. The main superiority of the proposed algorithm is the significant feature reduction along with retaining the accuracy. Compared to enhanced crow search algorithm, the proposed algorithm has improved the feature reduction metric and fitness metric by 27.12% and 5.16%, respectively, while losing the accuracy metric by only 0.53%. Several popular UCI datasets have been employed to evaluate the proposed feature selection algorithm. The experimental results show that the proposed algorithm outperformed other feature selection algorithms in state-of-the-art related works regarding feature reduction and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.