Abstract

Crude oil, also known as petroleum, plays a crucial role in global economies, politics, and technological advancements due to its widespread applications in industrial organic chemistry. Despite environmental concerns, the dwindling supply of easily accessible oil reservoirs necessitates the exploration of unconventional resources, such as heavy and extra-heavy oils. These oils, characterized by high viscosity and complex composition, pose challenges in extraction, transportation, and refinement. With decreasing temperatures, heavy oils undergo phase changes, with transitions from Newtonian to non-Newtonian fluid behavior, leading to difficulties in transportation. Alternative methods, such as the use of polymeric pour-point depressants, help mitigate flowability issues by preventing wax precipitation. Understanding the properties of waxy crude oil, such as the wax appearance temperature (WAT), is crucial for effective mitigation strategies. The objective of this research is to determine the WATs of different types of waxy crude oils through a comparative analysis using advanced techniques such as cross-polar microscopy (CPM), standard rheology, and differential scanning calorimetry (DSC). Disparities in WAT identified through different analytical methods highlight the potential of microscopy to enhance our understanding of complex fluid dynamics in real time in order to proactively identify and address crystallization issues in oilfields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call