Abstract

The metallurgical performances in a mold cavity were investigated using a conventional bilateral-port nozzle or a swirling flow nozzle (SFN) plus with in-mold electromagnetic stirring (M-EMS) for bloom continuous casting (CC) process. To this end, a coupled model of electromagnetism, flow, and heat transfer was developed. Meanwhile, corresponding plant trials were conducted to evaluate the influence of a melt feeding mode on the internal quality of an as-cast bloom in Shaoguan Steel, China. Under the case of the SFN plus with M-EMS, a novel opposite stirring mode in the bloom CC mold cavity can be observed. A swirling flow in the anti-clockwise direction generated by the SFN, and the other swirling flow in the clockwise direction induced by the M-EMS were formed in regions with distances ranging from 0 m to 0.11 m and 0.218 m to 1.4 m from the meniscus, respectively. As compared to the case of the bilateral-port nozzle plus with M-EMS, the opposite stirring mode in the mold cavity can promote the melt superheat dissipation, improve the casting soundness and the componential homogeneity, inhibit the mold level fluctuation, and also be beneficial to prevent slag erosion for the nozzle external wall at the meniscus. Here, the fluctuation range of carbon segregation along the casting direction is reduced from 0.16 to 0.06, and the magnitude of mold level fluctuation is reduced from 5.6 mm to 2.3 mm under the adoption of SFN plus with M-EMS, respectively.

Highlights

  • In the continuous casting process, it is well known that the feeding mode of molten steel into a mold cavity has a significant influence on the strand quality [1,2]

  • Marukawa et al [5,6] applied a rotating electromagnetic field around the submerged entry nozzle (SEN) to generate a local melt swirling flow inside the nozzle. They indicated that the electromagnetic swirling flow nozzle can reduce the jet impinging depth and cause the meniscus temperature to increase

  • A swirling flow in the anti-clockwise direction generated by swirling flow nozzle (SFN), and the other

Read more

Summary

Introduction

In the continuous casting process, it is well known that the feeding mode of molten steel into a mold cavity has a significant influence on the strand quality [1,2]. To weaken the jet impingement depth and improve the superheat dissipation in the mold cavity, much work on the melt feeding mode has been carried out in recent years. Yokoya et al [3,4] have inspected the swirling flow by fixing a swirl blade at the upper part of a normal straight nozzle to attain the superheat dissipation effect in the mold cavity. Marukawa et al [5,6] applied a rotating electromagnetic field around the submerged entry nozzle (SEN) to generate a local melt swirling flow inside the nozzle. They indicated that the electromagnetic swirling flow nozzle can reduce the jet impinging depth and cause the meniscus temperature to increase. Many potential practical problems, such as maintaining the swirling blade under erosion from high speed molten steel or the adhesion of inclusions [5,7,8], and the limited

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.