Abstract

Omega glutathione S-transferases (GSTs) are a newly identified class of GSTs with unique properties compared to other members in GST superfamily. This present study reports the cloning, characterization and stress-induced expression analysis of two omega GST genes in disk abalone, Haliotis discus discus. Two disk abalone omega GST genes, HdGSTO1 and HdGSTO2, encode two polypeptides with calculated molecular mass of 27.4 and 26.9 kDa, respectively. Their deduced amino acid sequences showed highest similarity with another molluscan omega GST from Crassostrea gigas. Three-dimensional structures of two omega GSTs were generated by homology modeling and exhibited typical omega GST structural characteristics. The recombinant proteins of HdGSTO1 and HdGSTO2 showed glutathione-dependent thioltransferase and dehydroascorbate reductase activities; however, no activity towards other common GST substrates was detected. Of the two genes, protein encoded by HdGSTO1 showed much higher catalytic ability than the other one. HdGSTO1 mRNA was expressed ubiquitously with high levels in all examined tissues, while HdGSTO2 showed specific expression in gonad and digestive tract. The transcriptional levels of HdGSTO1 in gill were dramatically elevated when abalones were subjected to heat shock, heavy metals and endocrine-disrupting chemical (EDC) exposure, indicating that HdGSTO1 might play important protective roles against environmental stress. HdGSTO2 expression was also significantly induced by heavy metals and EDCs although with much lower fold change than HdGSTO1. But under thermal stress, HdGSTO2 expression was repressed in a time-dependent pattern, implying its different physiological roles under stress. These results indicate that omega GSTs of the disk abalone, especially HdGSTO1, have great potentials as highly sensitive biomarkers of environmental stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call