Abstract

A novel oligonucleotide carrier which can scavenge ROS is described. The synthesized graft polymer is composed of a PEG segment and a TEMPO-containing hydrophobic segment for scavenging ROS. This graft polymer can form a PIC through electrostatic interaction with oligonucleotides such as siRNA. The amount of ROS was monitored by fluorescence measurements using H₂ DCFDA as a probe, and it was confirmed that the ROS level was effectively suppressed. The cellular uptake of PIC containing the fluorescence-labeled oligonucleotide was evaluated by fluorescence microscopy. Delivered siRNA suppressed the expression of the mRNA. The prepared graft copolymer is thus a promising candidate as a novel oligonucleotide carrier which also reduces ROS damage generated by cationic polymer carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.