Abstract

Monitoring and purification of uranium contamination are of great importance for the rational utilization of uranium resources and maintaining the environment. In this work, an olefin-linked covalent organic framework (GC-TFPB) and its amidoxime-modified product (GC-TFPB-AO) are synthesized with 3-cyano-4,6-dimethyl-2-hydroxypyridine (GC) and 1,3,5-tris(4-formylphenyl) benzene (TFPB) by Knoevenagel condensation. GC-TFPB-AO results in specificity for rapid fluorescent/smartphone uranyl ion (UO22+) detection based on the synergistic effect of multifunctional groups (amidoxime, pyridine, and hydroxyl groups). GC-TFPB-AO features a rapid and highly sensitive detection and adsorption of UO22+ with a detection limit of 21.25 nM. In addition, it has a good recovery (100-111%) for fluorescence detection in real samples, demonstrating an excellent potential of predesigned olefin-linked fluorescent COFs in nuclear contaminated wastewater detection and removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call