Abstract
Engineering fuzzy heat conduction problem with subjective uncertainties in input parameters constitutes a significant challenge. Based on fuzzy and interval theory, this paper presents novel numerical methods to efficiently identify the effect of fuzzy uncertainty on the system reliability analysis and optimization design. Firstly using the interval ranking strategy, the interval safety possibility in the transition state can be precisely quantified, and the eventual fuzzy safety possibility is calculated by integral operation. Then a fuzzy reliability-based optimization model is established with considerable computational cost caused by the two-layer nested loop. In order to improve the computational efficiency, a subinterval perturbation method based on the first-order Taylor series is presented to replace the inner loop. Comparing numerical results with traditional reliability model, two numerical examples are provided to evidence the superiority of proposed model and method for fuzzy reliability analysis and optimization in practical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.