Abstract

BackgroundThe human leukocyte antigen G5 subtype (HLA-G5) is a major histocompatibility complex (MHC) molecule that is selectively expressed at the maternal-foetal tissue interface and is required for the successful implantation of the in vitro fertilized embryo. It is critical to detect HLA-G5, especially HLA-G5 expression in embryo fluid, during in vitro embryo incubation and culture. However, the specificity and sensitivity of traditional ELISA methods to detect sHLA-G5 are insufficient. This work aimed to explore novel nucleic acid aptamer gold (Au)-nanoparticles to detect soluble HLA-G5 in liquid samples.MethodsSoluble HLA-G5 was obtained using a prokaryotic expression system, and two novel aptamers (HLA-G5-Apt1 and HLA-G5-Apt2) detecting HLA-G5 were screened by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method. Small (10 nm) gold nanoparticles (AuNPs) were incubated with AptHLAs to form two novel nucleic acid aptamers: Au-nanoparticles (AuNPs-AptHLA-G5-1 and AuNPs-AptHLA-G5-2).ResultsThe results showed that AptHLA-G5-1 and AptHLA-G5-2 have a high affinity for HLA-G5 and can detect its presence in liquid samples. Using the colorimetric sensing method, AuNPs-AptHLA-G1 had a detection limit as low as 20 ng/mL (recovery range between 98.7% to 102.0%), while AuNPs-AptHLA-G2 had a detection limit as low as 20 ng/mL (recovery range between 98.9% to 103.6%).ConclusionsOur work demonstrates that novel AuNPs are efficient detectors for HLA-G5 and are useful for diagnosis and treatment in the field of obstetrics-gynaecology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call